Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Place has been central to sociolinguistic research from the beginning. How speakers conceptualize and orient to place can influence linguistic productions. Additionally, places can and do have myriad meanings – some strongly contested. Further, place is not static, as people move and the ideologies regarding certain places evolve over time. This Element probes these themes. It begins by reviewing the existing work on language and place within sociolinguistics according to key themes in the literature – place orientation, gentrification, globalization, and commodification, amongst others. Then it introduces key concepts and frameworks for studying place within allied fields such as geography, sociology, architecture, and psychology. Each author then presents a case study of language and place within their respective field sites: rural Appalachia and Greater New Orleans. The authors end by identifying areas for future development of place theory within sociolinguistics. This title is also available as Open Access on Cambridge Core.more » « lessFree, publicly-accessible full text available January 17, 2026
-
Abstract PremiseUnderstanding how population dynamics vary in space and time is critical for understanding the basic life history and conservation needs of a species, especially for narrow endemic species whose populations are often in similar environments and therefore at increased risk of extinction under climate change. Here, we investigated the spatial and temporal variation in population dynamics ofRanunculus austro‐oreganus, a perennial buttercup endemic to fragmented prairie habitat in one county in southern Oregon. MethodsWe performed demographic surveys of three populations ofR. austro‐oreganusover 4 years (2015–2018). We used size‐structured population models and life table response experiments to investigate vital rates driving spatiotemporal variation in population growth. ResultsOverall,R. austro‐oreganushad positive or stable stochastic population growth rates, though individual vital rates and overall population growth varied substantially among sites and years. All populations had their greatest growth in the same year, suggesting potential synchrony associated with climate conditions. Differences in survival contributed most to spatial variation in population growth, while differences in reproduction contributed most to temporal variation in population growth. ConclusionsPopulations of this extremely narrow endemic appear stable, with positive growth during our study window. These results suggest that populations ofR. austro‐oreganusare able to persist if their habitat is not eliminated by land‐use change. Nonetheless, its narrow distribution and synchronous population dynamics suggest the need for continued monitoring, particularly with ongoing habitat loss and climate change.more » « less
-
Abstract Plants and mycorrhizal fungi form mutualistic relationships that affect how resources flow between organisms and within ecosystems. Common mycorrhizal networks (CMNs) could facilitate preferential transfer of carbon and limiting nutrients, but this remains difficult to predict. Do CMNs favour fungal resource acquisition at the expense of plant resource demands (a fungi‐centric view), or are they passive channels through which plants regulate resource fluxes (a plant‐centric view)?We used stable isotope tracers (13CO2and15NH3), plant traits, and mycorrhizal DNA to quantify above‐ and below‐ground carbon and nitrogen transfer between 18 plant species along a 520‐km latitudinal gradient in the Pacific Northwest, USA.Plant functional type and tissue stoichiometry were the most important predictors of interspecific resource transfer. Of ‘donor’ plants, 98% were13C‐enriched, but we detected transfer in only 2% of ‘receiver’ plants. However, all donors were15N‐enriched and we detected transfer in 81% of receivers. Nitrogen was preferentially transferred to annuals (0.26 ± 0.50 mg N per g leaf mass) compared with perennials (0.13 ± 0.30 mg N per g leaf mass). This corresponded with tissue stoichiometry differences.SynthesisOur findings suggest that plants and fungi that are located closer together in space and with stronger demand for resources over time are more likely to receive larger amounts of those limiting resources. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Sangiorgi, Francesca (Ed.)Abstract. Iceberg influence on diatom productivity has been observed for the present and suggested for the past, but direct seeding of the Southern Ocean during times of ice sheet collapse has never been directly demonstrated. Here we demonstrate enhanced diatom production and accumulation in the Amundsen Sea during a Mid-Pliocene interglacial that precisely coincides with pulses of ice-rafted debris (IRD) accumulation, and we infer a causal relation. International Ocean Discovery Program (IODP) Expedition 379 obtained continuous sediment records from the Amundsen Sea continental rise to document West Antarctic Ice Sheet (WAIS) history in an area currently experiencing the largest ice loss in Antarctica. Scanning electron microscopy (SEM) imagery of Mid-Pliocene interglacial sediments of Marine Isotope Stage (MIS) (GI-17, ∼ 3.9 Ma) documents distinct intervals of IRD-rich diatomite, whereas the overall diatom abundance and concentration of bloom species is relatively low in the absence of visible IRD. Sand- and granule-sized IRD grains are documented fully encased within diatomite laminae, with some displaying soft-sediment micro-deformation formed by grains falling into soft diatom ooze. IRD-rich diatomite layers are often characterized by nearly monospecific assemblages of the pelagic diatom Thalassiothrix antarctica, indicating very high primary productivity as IRD grains fell. Diatom-filled fecal pellets with clusters of barite grains are also documented within some of these laminae, further indicating direct mass sinking of diatom mats. Melting icebergs release soluble nutrients along with IRD; thus the coincidence of IRD and bloom species in Amundsen Sea sediments provides compelling evidence that iceberg discharge and melting directly initiates enhanced diatom productivity in the Southern Ocean. These results may contribute to interpreting past WAIS history by providing another proxy for potential collapse events. Furthermore, we suggest that ice sheet collapse may more broadly enhance Southern Ocean diatom production, which in itself can contribute to increased carbon export, potentially attenuating or countering the warming that may have triggered the collapse.more » « less
-
Assessing the stability of biological system models has aided in uncovering a plethora of new insights in genetics, neuroscience, and medicine. In this paper, we focus on analyzing the stability of neurological signals, including electroencephalogram (EEG) signals. Interestingly, spatiotemporal discrete-time linear fractional-order systems (DTLFOS) have been shown to accurately and efficiently represent a variety of neurological and physiological signals. Here, we leverage the conditions for stability of DTLFOS to assess a real-world EEG data set. By analyzing the stability of EEG signals during movement and rest tasks, we provide evidence of the usefulness of the quantification of stability as a bio-marker for cognitive motor control.more » « less
-
Abstract Understanding the chemical composition of our planet's crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro‐ and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome‐dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling‐atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world.more » « less
-
Climate warming threatens the persistence of a community of disturbance‐adapted native annual plantsAbstract With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer‐than‐ambient experimental conditions and may require more frequent disturbance intervention to sustain populations.Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals’ persistence, but even such efforts may prove futile under future climate regimes.more » « less
-
Abstract Predicting species' range shifts under future climate is a central goal of conservation ecology. Studying populations within and beyond multiple species' current ranges can help identify whether demographic responses to climate change exhibit directionality, indicative of range shifts, and whether responses are uniform across a suite of species.We quantified the demographic responses of six native perennial prairie species planted within and, for two species, beyond their northern range limits to a 3‐year experimental manipulation of temperature and precipitation at three sites spanning a latitudinal climate gradient in the Pacific Northwest, USA. We estimated population growth rates (λ) using integral projection models and tested for opposing responses to climate in different demographic vital rates (demographic compensation).Where species successfully established reproductive populations, warming negatively affectedλat sites within species' current ranges. Contrarily, warming and drought positively affectedλfor the two species planted beyond their northern range limits. Most species failed to establish a reproductive population at one or more sites within their current ranges, due to extremely low germination and seedling survival. We found little evidence of demographic compensation buffering populations to the climate treatments.Synthesis. These results support predictions across a suite of species that ranges will need to shift with climate change as populations within current ranges become increasingly vulnerable to decline. Species capable of dispersing beyond their leading edges may be more likely to persist, as our evidence suggests that projected changes in climate may benefit such populations. If species are unable to disperse to new habitat on their own, assisted migration may need to be considered to prevent the widespread loss of vulnerable species.more » « less
-
Abstract Declines in grassland diversity in response to nutrient addition are a general consequence of global change. This decline in species richness may be driven by multiple underlying processes operating at different time‐scales. Nutrient addition can reduce diversity by enhancing the rate of local extinction via competitive exclusion, or by reducing the rate of colonization by constraining the pool of species able to colonize under new conditions. Partitioning net change into extinction and colonization rates will better delineate the long‐term effect of global change in grasslands.We synthesized changes in richness in response to experimental fertilization with nitrogen, phosphorus and potassium with micronutrients across 30 grasslands. We quantified changes in local richness, colonization, and extinction over 8–10 years of nutrient addition, and compared these rates against control conditions to isolate the effect of nutrient addition from background dynamics.Total richness at steady state in the control plots was the sum of equal, relatively high rates of local colonization and extinction. On aggregate, 30%–35% of initial species were lost and the same proportion of new species were gained at least once over a decade. Absolute turnover increased with site‐level richness but was proportionately greater at lower‐richness sites relative to starting richness. Loss of total richness with nutrient addition, especially N in combination with P or K, was driven by enhanced rates of extinction with a smaller contribution from reduced colonization. Enhanced extinction and reduced colonization were disproportionately among native species, perennials, and forbs. Reduced colonization plateaued after the first few (<5) years after nutrient addition, while enhanced extinction continued throughout the first decade.Synthesis. Our results indicate a high rate of colonizations and extinctions underlying the richness of ambient communities and that nutrient enhancement drives overall declines in diversity primarily by exclusion of previously established species. Moreover, enhanced extinction continues over long time‐scales, suggesting continuous, long‐term community responses and a need for long‐term study to fully realize the extinction impact of increased nutrients on grassland composition.more » « less
An official website of the United States government

Full Text Available